top of page
Easy VLS Algorithms
Developed by Feliks Zemdegs and Mats Valk
Algorithms and layout sourced from CubeSkills - https://www.cubeskills.com/uploads/pdf/tutorials/easy-vls-algorithms.pdf
VLS (Valk Last Slot) is a set of algorithms designed to solve the last F2L slot while simultaneously orienting the last layer, skipping OLL entirely. It consists of a large number of cases, but subsets are often chosen for their ease of recognition, learning, and execution. These simplified cases help speedsolvers improve efficiency while minimizing the learning curve, making VLS an excellent tool for reducing solve times with practice.
The cases which involve directly inserting the pair and then executing OLL, are not included here
UF Edge Misoriented

U (F' U' F) U (R U2 R')


M' (U R U' RW')
(R' F R F')


(F2 RW U RW' F) (U' R U R')
U (R' U' R' F) R2 F' (R' U R)

y' (RW' U' R U) M'
UB Edge Misoriented

U (F' U F) ( R U' R')

(U2' R' F2) (L F L') (F2 R F')

U2 (R' F R F') (R U2' R')

y' U R' F' (L' U' L) F R

y' U2 (R2' F R F' R)

U2 (R U' R') (F' L' U' L F)

U y (F R U' R' F')

(U R U') y (R U R' U')2 F'

U (F' U F U) (R U2 R')

U F' (L' U2 L) U F

(F' U2' F) U (R U R')
UL Edge Misoriented


U2 R U2' y (R U R' U') F'
(U R U') x' U L' U L U2 LW'


(R' U' F R F') U' (R' U2 R)
U F' (L' U' L) F


(R' U' F R F') (R' U R)
(U R U) (R2' F R F') (R U2' R')

U R B' (U' R' U) (LW U LW')
UB & UL Edges Misoriented

y' U (R D RW') U' (RW D' R')

U (R LW U' R' U) x U' R'

M (U R U' R') U' M'

(U2 R U') y (R U' R' F')

(U R U') y (R U R' U') F'

U2 (RW U R' U') M (U R U R')

U R y (R U' R' U) (R U' R' F')
UB & UF Edges Misoriented

U R' (F' U' F U) (R2 U2' R')

U2 (R U' R' U') (R' F R F')

R' F (R2 U R' U') F'

(R U' R') (F' U' F) (R U R')
UF & UL Edges Misoriented

M' U2 (R U' R' U) (R U2' RW')

U2 (R U' R' U) (R U' R' U')
(R' F R F')

U (R U R' U') (R U' R')
F (R U R' U') F'
All Edges Misoriented

y' (RW' U' RW) U2 (M U' M')

U2' (F' U2' F) R U'

(U2' (R' F R F'))2

U2 (F' L' U2 L F) (R U2 R')
(R2' F R F')
bottom of page

